A new multidimensional partially integrable generalization of N - wave equation
نویسنده
چکیده
This paper develops a modification of the dressing method based on the nonhomoge-neous linear integral equation with integral operator having nonempty kernel. Method allows one to construct systems of multidimensional Partial Differential Equations (PDEs) in the form of differential polynomial in any dimension n. Associated solution space is not full, although it is parameterized by a certain number of arbitrary functions of n − 1 variables. As an example, we consider 5-dimensional generalization of the classical (2+1)-dimensional N-wave equation.
منابع مشابه
New multidimensional partially integrable generalization of S - integrable N - wave equation
This paper develops a modification of the dressing method based on inhomogeneous linear integral equation with integral operator having nonempty kernel. Method allows one to construct the systems of multidimensional Partial Differential Equations (PDEs) having differential polynomial structure in any dimension n. Associated solution space is not full, although it is parametrized by certain numb...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملSolitary Wave solutions of the BK equation and ALWW system by using the first integral method
Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کامل